To, co mamy na myśli, mówiąc “próżnia", nie może być całkowicie puste, gdyż aby tak było, wszystkie pola — grawitacyjne, elektromagnetyczne i inne — musiałyby całkowicie zniknąć. Jednak z wartością pola i tempem jego zmian jest tak, jak z położeniem i prędkością cząstki — z zasady nieoznaczoności wynika, że im dokładniej znamy jedną z tych wielkości, tym mniej wiemy o drugiej. A zatem pole w pustej przestrzeni nie może całkowicie zniknąć, gdyż wtedy znalibyśmy precyzyjnie jego wartość (zero) i tempo zmian (również zero). Wartości pól nie można wyznaczyć z dowolną dokładnością; zachowanie koniecznej nieoznaczo-
ności zapewniają kwantowe fluktuacje. Takie fluktuacje można wyobrazić sobie jako pojawiające się w pewnej chwili pary fotonów lub grawitonów, które istnieją oddzielnie przez krótki czas, a następnie ani-hilują się wzajemnie. Są to cząstki wirtualne, podobnie jak cząstki przenoszące oddziaływanie grawitacyjne Słońca. W przeciwieństwie do cząstek rzeczywistych, nie można ich bezpośrednio zarejestrować za pomocą detektora cząstek. Można jednak zmierzyć ich pośrednie efekty, na przykład niewielkie zmiany energii orbit elektronowych w atomach; wyniki pomiarów zgadzają się z przewidywaniami teoretycznymi z niezwykłą dokładnością. Z zasady nieoznaczoności wynika również istnienie podobnych par wirtualnych cząstek materii, takich jak elektrony i kwarki. Te pary jednak składają się z cząstek i antycząstek (fotony i grawitony są identyczne ze swymi antycząstkami).
Ponieważ energia nie może powstawać z niczego, jeden z partnerów pary cząstka - antycząstka musi mieć ujemną energię, a drugi dodatnią. Temu o ujemnej energii przeznaczone jest być krótko żyjącą wirtualną cząstką, gdyż rzeczywiste cząstki w normalnych warunkach mają zawsze dodatnią energię. Wobec tego, cząstka ta musi znaleźć swego partnera i ulec anihilacji. Jednakże rzeczywista cząstka w pobliżu ciała o dużej masie ma niższą energię niż wtedy, gdy jest z dala od niego, ponieważ przesunięcie jej na znaczną odległość od tego ciała wymaga zużycia energii niezbędnej do przezwyciężenia jego przyciągania grawitacyjnego. W normalnych sytuacjach energia takiej cząstki jest wciąż dodatnia, ale rzeczywiste cząstki mogą mieć ujemną energię, jeśli znajdują się dostatecznie blisko horyzontu. A zatem w pobliżu czarnej dziury cząstka należąca do wirtualnej pary i mająca ujemną energię może wpaść do czarnej dziury i stać się rzeczywistą cząstką lub antycząstka. W tym wypadku nie musi już anihilować się ze swym partnerem. Ten ostatni może również wpaść do czarnej dziury, lecz może także — mając dodatnią energię — uciec z jej otoczenia i stać się rzeczywistą cząstką lub antycząstka (rys. 22). Obserwator, który znajduje się daleko, uzna, iż cząstka ta została wypromieniowana przez czarną dziurę. Im mniejsza czarna dziura, tym krótszy dystans musi pokonać cząstka o ujemnej energii, by stać się cząstką rzeczywistą, a więc tym większe jest natężenie promieniowania i większa temperatura czarnej dziury.
Dodatnia energia promieniowania jest równoważona przez strumień ujemnej energii cząstek wpadających do czarnej dziury. Z równania Einsteina E = mc2, gdzie E to energia, m — masa, a c — prędkość s'wiatła, wiemy, iż energia jest proporcjonalna do masy. Strumień uje-
mnej energii wpadającej do czarnej dziury powoduje więc zmniejszenie jej masy. W miarę jak maleje masa czarnej dziury, maleje też powierzchnia jej horyzontu, ale związane z tym zmniejszenie jej entropii jest skompensowane z nawiązką przez entropię promieniowania, a więc druga zasada termodynamiki nie jest pogwałcona.
Co więcej, im mniejsza masa czarnej dziury, tym wyższa jest jej temperatura. Wobec tego, w miarę jak czarna dziura traci masę, rośnie jej temperatura i wzrasta natężenie promieniowania, a zatem i tempo utraty masy. Nie jest jasne, co dzieje się, gdy w końcu masa czarnej dziury staje się bardzo mała; należy jednak przypuszczać, że czarna dziura znika w ogromnym wybuchu promieniowania, o mocy równoważnej wybuchowi milionów bomb wodorowych.
Czarna dziura o masie równej kilku masom Słońca miałaby temperaturę zaledwie jednej dziesięciomilionowej stopnia powyżej zera bezwzględnego. To o wiele mniej niż temperatura promieniowania mikro-